August 1, 2011

There is no doubt that abnormally elevated insulin is associated with body fat accumulation

For as long as diets existed there have been influential proponents, or believers, who at some point had what they thought were epiphanies. From that point forward, they disavowed the diets that they formally endorsed. Low carbohydrate dieting seems to be in this situation now. Among other things, it has been recently “discovered” that the idea that insulin drives fat into body fat cells is “wrong”.

Based on some of the comments I have been receiving lately, apparently a few readers think that I am one of those “enlightened”. If you are interested in what I have been eating, for quite some time now, just click on the link at the top of this blog that refers to my transformation. It is essentially high in all macronutrients on days that I exercise, and low in carbohydrates and calories on days that I don’t. It is a cyclic approach that works for me; calorie surpluses on some days and calorie deficits on other days.

But let me set the record straight regarding what I think: there is no doubt that insulin is associated with body fat accumulation. I was told that an influential health blogger (whom I respect a lot) denied this recently, going to the extreme of saying that no professional metabolism or endocrinology researcher believes in it, but I couldn’t find any evidence of that statement. It is not hard at all to find professional metabolism and endocrinology researchers who have asserted that insulin is associated with body fat accumulation, based on very reliable evidence. Actually, this is Biochemistry 101.

What I think is truly unclear is whether insulin spikes associated with carbohydrate-rich foods in general are the cause of obesity. This idea is, indeed, probably wrong given the evidence we have from various human populations whose members consume plenty of non-industrialized carbohydrate-rich foods. On a related note, I particularly disagree with the notion that the pancreas gets tired over time due to having to secrete insulin in bursts, which seems to also be one of the foundations on which many low carbohydrate diet varieties rest.

As with almost everything related to health, the role of insulin in body fat gain is complex, and part of that complexity is due to the nonlinear relationship between body fat gain and postprandial insulin release. Industrial carbohydrate-rich foods have a much higher glycemic load than natural carbohydrate-rich foods, even though their glycemic index may be the same in some cases. In other words, the quantity of easily digestible carbohydrates per gram is much higher in industrial carbohydrate-rich foods.

In normoglycemic folks, this leads to an abnormally elevated insulin response, among other hormonal responses. For example, circulating growth hormone, which promotes body fat loss, is inversely correlated with circulating insulin. Insulin drives fat, typically from dietary sources of fat, into adipocytes. That fat may also come from excess carbohydrates, packaged into VLDL particles.

Under normal circumstances, that would be fine, since our body is designed to store fat and release it as needed. But the abnormal insulin response elicited by industrial carbohydrate-rich foods, together with other hormonal responses, leads to a little more body fat accumulation, and for longer, than it should. And I’m talking here about people without any metabolic damage. Saturated and monounsaturated fats are healthy when eaten, but when they are stored as excess body fat, they become pro-inflammatory.

Body fat is like an organ, secreting many hormones into the bloodstream, several of which are pro-inflammatory. One of those pro-inflammatory hormones, which I believe is closely linked with many diseases of civilization, is tumor necrosis factor. (The acronym is now TNF. Apparently the “-alpha” after its name and acronym has been dropped recently.) Dietary fat, particularly saturated fat, seems to be anti-inflammatory. In other words, body fat accumulation is the problem. You only need 30 g/d of excess body fat accumulation to gain around 24 lbs of fat per year. Over three years, that will add up to over 70 lbs of body fat.

In my view, ultimately it is excess inflammation (which is, in essence, a vascular response) that is at the source of most of the diseases of civilization.

That is where the nonlinearity comes in. Insulin is healthy up to a point. Beyond that, it starts causing health problems, over time. And one of the main mechanisms by which it does so is via excessive body fat accumulation, with different damage threshold levels for different people. Insulin may decrease appetite as it goes up, but it increases it if goes down too much. If it goes up abnormally, typically it will go down too much. As it reaches a trough it induces hypoglycemia, even if mildly.

Take a look at the graph below, from this post showing the glucose variations in normoglycemic individuals. There is a lot of variation among different individuals, but it is clear that the magnitude of the hypoglycemic dips is inversely correlated with the magnitude of the glucose spikes. That inverse correlation is due primarily to the effect of insulin. Under normal circumstances, a decrease in circulating insulin would promote an increase in free fatty acids in circulation, which would normally have a suppressing effect on hunger in the hours after a meal. But industrial carbohydrate-rich foods lead to increases and decreases in glucose and insulin that are too steep, causing the opposite effect.


You may ask: why do you keep talking about industrial carbohydrate-rich foods? Why not talk about industrial protein- or fat-rich foods as well? The reason is that the food industry has not been very successful at producing industrial protein- or fat-rich foods that are palatable without adding a lot of carbohydrate to them.

More often than not they need enough carbohydrate added in the form of sugar to become truly addictive.

No comments:

Post a Comment